Mathématiques: 1Bac SM

Séance 8-1: Trigonométrie (Cours)

Professeur: Mr CHEDDADI Haitam

Sommaire

I- Formules de transformation de base

- 1-1/ Formules d'addition
- 1-2/ Transformation de $\cos{(2a)}$, $\sin{(2a)}$ et $\tan{(2a)}$ Formules de linéarisation
- 1-3/ Formules de $\cos(a)$, $\sin(a)$ et $\tan(a)$ en fonction de $\tan(\frac{a}{2})$
- II- Transformation de produits en sommes
- III- Transformation de sommes en produits
- IV- Transformation de l'expression $a\cos(x) + b\sin(x)$

I- Formules de transformation de base

1-1/ Formules d'addition

Proposition

Soit a et b deux nombre réels.

On a les formules suivantes:

$$\cos(a-b) = \cos a \cdot \cos b + \sin a \cdot \sin b$$
$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$
$$\sin(a-b) = \sin a \cdot \cos b - \cos a \cdot \sin b$$
$$\sin(a+b) = \sin a \cdot \cos b + \cos a \cdot \sin b$$

Applications

- 1. En remarquant que $\frac{5\pi}{12} = \frac{2\pi}{3} \frac{\pi}{4}$, calculer $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$.
- 2. Calculer $\cos \frac{11\pi}{12}$ et $\sin \frac{11\pi}{12}$.

Soit $x \in \mathbb{R}$.

3. Établir les égalités suivantes :

$$\boxed{1}\cos x - \sqrt{3}\sin x = 2\sin\left(rac{\pi}{6} - x
ight)$$

$$\boxed{2} \cos x + \sin x = \sqrt{2} \cos \left(x - \frac{\pi}{4}\right)$$

$$\boxed{3} \sqrt{3}\cos x + \sin x = 2\sin\left(x + \frac{\pi}{3}\right)$$

$$\boxed{4} - \sqrt{6}\cos x - \sqrt{2}\sin x = 2\sqrt{2}\cos\left(x + \frac{5\pi}{6}\right)$$

Proposition

Soit a et b deux nombre réels tels que $a \neq \frac{\pi}{2} + k\pi$ et $b \neq \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$.

On a les formules suivantes:

- Si
$$a-b
eq rac{\pi}{2} + k\pi$$
 avec $k \in \mathbb{Z}$, alors : $an(a-b) = rac{ an a - an b}{1 + an a an b}$

- Si
$$a+b \neq \frac{\pi}{2} + k\pi$$
 avec $k \in \mathbb{Z}$, alors : $\tan{(a+b)} = \frac{\tan{a} + \tan{b}}{1 - \tan{a} \cdot \tan{b}}$

Applications

1. En remarquant que $\frac{5\pi}{12} = \frac{7\pi}{12} - \frac{\pi}{6}$, calculer tan $\frac{5\pi}{12}$.

Soit $x \in \mathbb{R}$ tel que $x \neq \frac{\pi}{2} + k\pi$ et $x \neq \frac{\pi}{4} + k\pi$ et $x \neq -\frac{\pi}{4} + k\pi$.

2. Simplifier
$$\tan\left(\frac{\pi}{4}-x\right)$$
. $\tan\left(\frac{\pi}{4}+x\right)$.

1-2/ Transformation de $\cos{(2a)}$, $\sin{(2a)}$ et $\tan{(2a)}$ - Formules de linéarisation

Proposition

Soit a et b deux nombre réels.

On a les formules suivantes :

$$-\cos{(2a)} = \cos^2{a} - \sin^2{a} = 2\cos^2{a} - 1 = 1 - 2\sin^2{a}$$

$$-\sin(2a) = 2\sin a \cdot \cos a$$

$$-\cos^2 a = \frac{1+\cos(2a)}{2}$$
 et $\sin^2 a = \frac{1-\cos(2a)}{2}$ et $\tan^2 a = \frac{1-\cos(2a)}{1+\cos(2a)}$

- Si
$$a \neq \frac{\pi}{2} + k\pi$$
 et $2a \neq \frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$, alors : $\tan{(2a)} = \frac{2\tan{a}}{1-\tan^2{a}}$

Remarques

On a pour tout réel a :

$$1+\cos a=2\cos^2\left(rac{a}{2}
ight) \;\; ; \;\; 1-\cos a=2\sin^2\left(rac{a}{2}
ight)$$

$$\sin a = 2\cos\left(\frac{a}{2}\right)\sin\left(\frac{a}{2}\right)$$

On rappelle que pour tout réel a, on a : $\sin a = \cos \left(\frac{\pi}{2} - a \right) = -\cos \left(\frac{\pi}{2} + a \right)$

Applications

Soit $x \in \mathbb{R}$.

1. Établir les égalités suivantes :

$$\boxed{1} 1 + \sin x = \left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^{2} \\
\boxed{2} 1 + \cos x + 2\sin^{2} \frac{x}{2} = 2 \\
\boxed{3} 2\sin x + \sin(2x) = 8\sin\left(\frac{x}{2}\right).\cos^{3}\left(\frac{x}{2}\right) \\
\boxed{4} 1 - \cos x + \sin x = 2\sin\frac{x}{2}.\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right) \\
\boxed{5} 1 + \cos x - \sin x = 2\sqrt{2}\cos\frac{x}{2}.\cos\left(\frac{x}{2} + \frac{\pi}{4}\right)$$

Soit α un réel tel que : $\sin \alpha \neq -1$

2. Montrer que :
$$\frac{1-\sin\alpha}{1+\sin\alpha} = \tan^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$$

Soit $x \in \mathbb{R}$ un réel tel $x \neq k\pi$ que pour tout $k \in \mathbb{Z}$.

3. Montrer que $\frac{1-\cos x}{\sin x} = \tan \frac{x}{2}$ et $\sin x = (1+\cos x)\tan \frac{x}{2}$.

1-3/ Formules de $\cos(a)$, $\sin(a)$ et $\tan(a)$ en fonction de $\tan(\frac{a}{2})$

Proposition

Soit a un nombre réel tel que $a \neq \pi + 2k\pi$ et $a \neq \frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$.

On pose : $t = \tan\left(\frac{a}{2}\right)$

On a : $\sin a = \frac{2t}{1+t^2}$ et $\cos a = \frac{1-t^2}{1+t^2}$ et $\tan a = \frac{2t}{1-t^2}$

Applications

Soit $x \in \mathbb{R}$ tel que $\tan x = 2$

1. Calculer $\cos(2x)$, $\sin(2x)$ et $\tan(2x)$.

Soit x un nombre réel tel que $x \neq \pi + 2k\pi$ pour tout $k \in \mathbb{Z}$.

On pose $t = \tan \frac{x}{2}$

2. Montrer que $\frac{1-\cos x}{1+\cos x} = t^2$ et $\frac{\sin x}{1+\cos x} = t$.

Soit a et b deux réels de l'intervalle $0: \frac{\pi}{2}$.

3. Prouver les inégalités suivantes :

$$\boxed{1} \ 1 + \frac{1}{\tan a} < \frac{1}{\tan \frac{a}{2}}$$

$$\boxed{2} \ \tan \left(\frac{a+b}{2}\right) \le \frac{\tan a + \tan b}{2}$$

(Indication : on pourra poser $x = \tan \frac{a}{2}$ et $y = \tan \frac{b}{2}$).

II- Transformation de produits en sommes

Proposition

Soit a et b deux nombre réels.

On a les formules suivantes:

$$\cos a \cdot \cos b = \frac{1}{2} \left[\cos (a - b) + \cos (a + b) \right]$$

 $\sin a \cdot \sin b = \frac{1}{2} \left[\cos (a - b) - \cos (a + b) \right]$
 $\sin a \cdot \cos b = \frac{1}{2} \left[\sin (a + b) + \sin (a - b) \right]$
 $\cos a \cdot \sin b = \frac{1}{2} \left[\sin (a + b) - \sin (a - b) \right]$

Applications

1. Écrire sous forme de sommes les produits suivants :

$$egin{aligned} A\left(x
ight) &= \cos x.\cos\left(5x
ight) \ B\left(x
ight) &= \sin\left(3x
ight).\sin\left(4x
ight) \ C\left(x
ight) &= \cos\left(x-rac{\pi}{3}
ight).\sin\left(2x+rac{\pi}{4}
ight) \end{aligned}$$

III- Transformation de sommes en produits

Proposition

Soit p et q deux nombre réels.

On a les formules suivantes :

$$egin{aligned} \cos p + \cos q &= 2\cos\left(rac{p+q}{2}
ight)\cos\left(rac{p-q}{2}
ight) \ \cos p - \cos q &= -2\sin\left(rac{p+q}{2}
ight)\sin\left(rac{p-q}{2}
ight) \ \sin p + \sin q &= 2\sin\left(rac{p+q}{2}
ight)\cos\left(rac{p-q}{2}
ight) \ \sin p - \sin q &= 2\sin\left(rac{p-q}{2}
ight)\cos\left(rac{p+q}{2}
ight) \end{aligned}$$

Applications

1. Écrire sous forme d'un produit les sommes suivantes :

$$egin{aligned} A(x) &= \sin x + \sin{(2x)} + \sin{(3x)} \ B(x) &= 1 + \cos x + \cos{(2x)} + \cos{(3x)} \ C(x) &= 1 + \sin{(2x)} - \cos{(2x)} \ D(x) &= \sin x + \sin{(5x)} + \sin{(7x)} \end{aligned}$$

- 2. a- Écrire sous forme de produit l'expression $\cos x + \cos(2x)$ où $x \in \mathbb{R}$.
- 2. b- En déduire les solutions dans \mathbb{R} de l'équation : $\cos x + \cos (2x) = 0$
- 2. c- Résoudre dans l'intervalle $[0;\pi]$ l'inéquation : $\cos x + \cos(2x) \ge 0$
- 3. a- Factoriser l'expression $\sin x + \sin(2x) + \sin(3x) + \sin(4x)$ où $x \in \mathbb{R}$.
- 3. b- Résoudre dans l'intervalle $[-\pi; 0]$ l'inéquation : $\sin x + \sin(2x) + \sin(3x) + \sin(4x) < 0$
- 4. a- Montrer que pour tout $x \in \mathbb{R}$: $\sin\left(x \frac{\pi}{3}\right) + \sin\left(3x\right) = 2\sin\left(2x \frac{\pi}{6}\right)\cos\left(x + \frac{\pi}{6}\right)$
- 4. b- Résoudre dans $\mathbb R$ l'équation : $\sin x + 2 \sin (3x) \sqrt{3} \cos x = 0$
- 4. c- Résoudre dans l'intervalle $\left[0; \frac{\pi}{2}\right[$ l'inéquation : $\sin x + 2\sin(3x) \sqrt{3}\cos x \le 0$

IV- Transformation de l'expression $a\cos(x) + b\sin(x)$

Proposition

Soit a et b deux nombre réels tels que $(a;b) \neq (0;0)$.

Alors il existe un réel α tel que $a\cos x + b\sin x = \sqrt{a^2 + b^2}\cos(x - \alpha)$ avec $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$ et $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$.

Applications

1. Mettre les expressions suivantes sous forme de $\rho \cos(\omega x + \varphi)$:

$$A\left(x
ight) = \cos\left(2x
ight) + \sin\left(2x
ight) \ B\left(x
ight) = \cos x - \sqrt{3}\sin x \ C\left(x
ight) = 3\cosrac{x}{2} - \sqrt{3}\sinrac{x}{2}$$

- 2. a- Montrer que : $(orall x \in \mathbb{R}) \, \cos{(2x)} \sqrt{3} \sin{(2x)} = \cos{\left(2x + \frac{\pi}{3}\right)}$
- 2. b- En déduire les solutions dans $\mathbb R$ de l'équation : $\cos{(2x)} \sqrt{3}\sin{(2x)} = 1$
- 2. c- Résoudre dans l'intervalle $\left]-\frac{\pi}{2};\frac{\pi}{2}\right]$ l'inéquation : $\cos{(2x)}-\sqrt{3}\sin{(2x)}\geq 1$

3. Résoudre dans l'intervalle] $-\pi$; 2π [l'inéquation : $\cos\frac{x}{2} + \sin\frac{x}{2} \ge -1$